Cart (Loading....) | Create Account
Close category search window
 

Optimal transmit-receiver design in the presence of signal-dependent interference and channel noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pillai, S.U. ; Dept. of Electr. Eng., Polytech. Univ., Brooklyn, NY, USA ; Oh, H.S. ; Youla, D.C. ; Guerci, J.R.

Optimal detection of a target return contaminated by signal-dependent interference, as well as additive channel noise, requires the design of a transmit pulse f(t) and a receiver impulse response h(t) jointly maximizing the output signal to interference plus noise ratio (SINR). Despite the highly nonlinear nature of this problem, it has been possible to show that f(t) may always be chosen minimum-phase. A full analysis concludes with the construction of an effective numerical procedure for the determination of optimal pairs (f,h) that appears to converge satisfactorily for most values of input SINR. Extensive simulation reveals that the shape of f(t) can be a critical factor. In particular, the performance of a chirp-like pulse is often unacceptable, especially when clutter and channel noise are low-pass dominant and comparable

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 2 )

Date of Publication:

Mar 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.