By Topic

Energy-based hysteresis model for magnetostrictive transducers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Calkins, F.T. ; Phantom Works Flight/Configuration Technol., Boeing Co., Seattle, WA, USA ; Smith, R.C. ; Flatau, A.B.

This paper addresses the modeling of hysteresis in magnetostrictive transducers in the context of control applications that require an accurate characterization of the relation between input currents and strains output by the transducer. This relation typically exhibits significant nonlinearities and hysteresis because of inherent properties of magnetostrictive materials. The characterization considered here is based on the Jiles-Atherton mean field model for ferromagnetic hysteresis in combination with a quadratic moment rotation model for magnetostriction. As demonstrated by comparison with experimental data, the magnetization model very adequately quantifies both major and minor loops under various operating conditions. The combined model can then be used to accurately characterize output strains at moderate drive levels. The advantages of this model lie in the small number (six) of required parameters and its flexibility under a variety of operating conditions

Published in:

Magnetics, IEEE Transactions on  (Volume:36 ,  Issue: 2 )