By Topic

Self-buckling of micromachined beams under resistive heating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mu Chiao ; Dept. of Mech. Eng., California Univ., Berkeley, CA, USA ; Liwei Lin

Self-buckling behavior of micromachined beams under resistive heating is described by an electromechanical model with experimental verifications. This model consists of both electrothermal and thermoelastic analyses for beam-shape polysilicon microstructures that are fabricated by a standard surface micromachining process. When an input electrical current is applied, Joule-heating effects trigger the thermal expansion of beam structures and cause mechanical buckling. The standard testing devices are clamped-clamped bridges, 2-/spl mu/m wide, 2-/spl mu/m thick, and 100-/spl mu/m long. It is found that a minimum current of 3.5 mA is required to cause beam buckling. Under an input current of 4.8 mA, a lateral deflection of 2.9/spl plusmn/0.2 /spl mu/m at the center of the bridge is measured with a computer image processing scheme. The experimental measurements are found to be consistent with analytical predictions. A discussion of modeling considerations and process variations is presented.

Published in:

Microelectromechanical Systems, Journal of  (Volume:9 ,  Issue: 1 )