By Topic

Air-bearing sliders and plane-plane-concave tips for atomic force microscope cantilevers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. P. Ried ; IBM Almaden Res. Center, San Jose, CA, USA ; H. J. Mamin ; D. Rugar

This paper explores strategies for fabricating and maintaining a sharp atomic force microscope (AFM) tip suitable for AFM data storage applications. To this end, AFM cantilevers have been incorporated into micromachined sled carriers and air-bearing sliders. These supports act to limit the maximum loading force on the AFM tip and allow for improved vibration immunity for the AFM cantilever in comparison to macroscopic loading schemes. Readback from a patterned rotating disk has been demonstrated using these devices. Silicon-carbide AFM cantilevers with diamond tips have been fabricated in a process compatible with that of the sleds and sliders. Molded silicon-nitride tips defined by the intersection of three surfaces have also been fabricated for AFM cantilevers. The molds for plane-plane-concave tips are defined by two silicon {111} planes and a silicon-dioxide curved surface. By geometry, the three surfaces necessarily have a unique intersection point, which may improve the consistency in sharpness of these tips relative to conventional pyramidal tips.

Published in:

Journal of Microelectromechanical Systems  (Volume:9 ,  Issue: 1 )