By Topic

Surface micromachined polysilicon heart cell force transducer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lin, G. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Pister, K.S.J. ; Roos, Kenneth P.

A microelectromechanical systems (MEMS) force transducer system, with a volume less than 1 mm/sup 3/ millimeter, has been developed to measure forces generated by living heart muscle cells. Cell attachment and measurement of contractile forces have been demonstrated with a commercially fabricated surface-micromachined hinged polysilicon device. Two freestanding polysilicon clamps, each suspended by a pair of microbeams, hold each end of a heart cell. When the cell contracts, the beam bend and force is determined from the measured deflection and the spring constant in the beams. The average maximal force over seven contractile experiments using a calcium solution stimulus was F/sub max/=12.6/spl plusmn/4.66 /spl mu/N. Normalizing to a cross-sectional area, F/sub max//area was 23.7/spl plusmn/8.6 mN/mm/sup 2/. These force data were also correlated to optically imaged striation pattern periodicity. Intermediate forces were also measured in response to a calcium solution gradient and showed similar behavior to those measured in other laboratories. This MEMS force transducer demonstrates the feasibility of higher fidelity measurements from muscle cells and, thus, an improved understanding of the mechanisms of muscle contraction.

Published in:

Microelectromechanical Systems, Journal of  (Volume:9 ,  Issue: 1 )