By Topic

Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng, Y.T. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Liwei Lin ; Najafi, K.

Silicon fusion and eutectic bonding processes based on the technique of localized heating have been successfully demonstrated. Phosphorus-doped polysilicon and gold films are applied separately in the silicon-to-glass fusion bonding and silicon-to-gold eutectic bonding experiments. These films are patterned as line-shape resistive heaters with widths of 5 or 7 /spl mu/m for the purpose of heating and bonding. In the experiments, silicon-to-glass fusion bonding and silicon to gold eutectic bonding are successfully achieved at temperatures above 1000/spl deg/C and 800/spl deg/C, respectively, by applying 1-MPa contact pressure. Both bonding processes can achieve bonding strength comparable to the fracture toughness of bulk silicon in less than 5 min. Without using global heating furnaces, localized bonding process is conducted in the common environment of room temperature and atmospheric pressure. Although these processes are accomplished within a confined bonding region and under high temperature, the substrate temperature remains low. This new class of bonding scheme has potential applications for microelectromechanical systems fabrication and packaging that require low-temperature processing at the wafer level, excellent bonding strength, and hermetic sealing characteristics.

Published in:

Microelectromechanical Systems, Journal of  (Volume:9 ,  Issue: 1 )