By Topic

Adaptive call admission control under quality of service constraints: a reinforcement learning solution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hui Tong ; Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO, USA ; Brown, T.X.

We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions. We show that RL provides a solution to this constrained semi-Markov decision problem and is able to earn significantly higher revenues than alternative heuristics. Unlike other model-based algorithms, RL does not require the explicit state transition models to solve the decision problems. This feature is very important if one considers large integrated service networks supporting a number of different service types, where the number of states is so large that model-based optimization algorithms are infeasible. Both packet-level and call-level QoS constraints are addressed, and both conservative and aggressive approaches to the QoS constraints are considered. Results are demonstrated on a single link and extended to routing on a multilink network.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:18 ,  Issue: 2 )