By Topic

On causal inference in fuzzy cognitive maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuan Miao ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Zhi-Qiang Liu

Fuzzy cognitive maps (FCM) is a powerful paradigm for representing human knowledge and causal inference. This paper formally analyzes the causal inference mechanism of FCM. We focus on binary concept states. It is known that given initial conditions, FCM is able to reach only certain states in its state space. We prove that the problem of finding whether a state is reachable in the FCM is nondeterministic polynomial (NP) hard, that we can divide fuzzy cognitive maps containing circles into basic FCM modules. The inference patterns in these basic modules can be studied individually in a hierarchical fashion. This paper also presents a recursive formula for computing FCM's inference patterns in terms of key vertices. The theoretical results presented in this paper provide a feasible and effective framework for the analysis and design of fuzzy cognitive maps in real-world large-scale applications

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:8 ,  Issue: 1 )