By Topic

A Bayesian predictive classification approach to robust speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We introduce a new decision strategy called Bayesian predictive classification (BPC) for robust speech recognition where an unknown mismatch between the training and testing conditions exists. We then propose and focus on one of the approximate BPC approaches called quasi-Bayes predictive classification (QBPC). In a series of comparative experiments where the mismatch is caused by additive white Gaussian noise, we show that the proposed QBPC approach achieves a considerable improvement over the conventional plug-in MAP decision rule

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:8 ,  Issue: 2 )