By Topic

Recursive weighted median filters admitting negative weights and their optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arce, G.R. ; Dept. of Electr. & Comput. Eng., Delaware Univ., Newark, DE, USA ; Paredes, J.L.

A recursive weighted median (RWM) filter structure admitting negative weights is introduced. Much like the sample median is analogous to the sample mean, the proposed class of RWM filters is analogous to the class of infinite impulse response (IIR) linear filters. RWM filters provide advantages over linear IIR filters, offering near perfect “stopband” characteristics and robustness against noise. Unlike linear IIR filters, RWM filters are always stable under the bounded-input bounded-output criterion, regardless of the values taken by the feedback filter weights. RWM filters also offer a number of advantages over their nonrecursive counterparts, including a significant reduction in computational complexity, increased robustness to noise, and the ability to model “resonant” or vibratory behavior. A novel “recursive decoupling” adaptive optimization algorithm for the design of this class of recursive WM filters is also introduced. Several properties of RWM filters are presented, and a number of simulations are included to illustrate the advantages of RWM filters over their nonrecursive counterparts and IIR linear filters

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 3 )