By Topic

Pattern discovery by residual analysis and recursive partitioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Chau ; Bloorview MacMillan Centre, Toronto, Ont., Canada ; A. K. C. Wong

In this paper, a novel method of pattern discovery is proposed. It is based on the theoretical formulation of a contingency table of events. Using residual analysis and recursive partitioning, statistically significant events are identified in a data set. These events constitute the important information contained in the data set and are easily interpretable as simple rules, contour plots, or parallel axes plots. In addition, an informative probabilistic description of the data is automatically furnished by the discovery process. Following a theoretical formulation, experiments with real and simulated data will demonstrate the ability to discover subtle patterns amid noise, the invariance to changes of scale, cluster detection, and discovery of multidimensional patterns. It is shown that the pattern discovery method offers the advantages of easy interpretation, rapid training, and tolerance to noncentralized noise

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:11 ,  Issue: 6 )