By Topic

Contact transition control via joint acceleration feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
W. L. Xu ; Centre for Intelligent Design, Autom. & Manuf., City Univ. of Hong Kong, Kowloon, Hong Kong ; J. D. Han ; S. K. Tso ; Y. C. Wang

Stable and controllable transition from free motion to constrained motion is of central importance for robots in contact with the environment in many applications. In this paper, a joint acceleration feedback control scheme of high bandwidth is employed to damp oscillations during the contact transition when the approaching speed does not vanish. In this control scheme, a classical integral force controller is refined by means of joint acceleration and velocity feedback. This is intended to achieve a stable contact transition without need of adjusting the controller parameters adaptive to the unknown or changing environments. Extensive experiments are conducted on the third joint of a three-link direct-drive robot to verify the proposed scheme for the environments of various stiffnesses, including elastic (sponge), less-elastic (cardboard), and hard (steel plate) surfaces. Results are also compared with those by the transition control without the acceleration feedback. The proposed scheme is shown to be promising in terms of robustness, stability and adaptability

Published in:

IEEE Transactions on Industrial Electronics  (Volume:47 ,  Issue: 1 )