By Topic

Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Romeiser ; Inst. fur Meereskunde, Hamburg Univ., Germany ; D. R. Thompson

The phase information in along-track interferometric synthetic aperture radar (along-track INSAR, ATI) images is a measure of the Doppler shift of the backscattered signal and thus of the line-of-sight velocity of the scatterers. It can be exploited for oceanic surface current measurements from aircraft or spacecraft. However, as already discussed in previous publications, the mean Doppler frequency of the radar backscatter from the ocean is not exclusively determined by the mean surface current, but it includes contributions associated with surface wave motion. The authors present an efficient new model for the simulation of Doppler spectra and ATI signatures. The model is based on Bragg scattering theory in a composite surface model approach. They show that resulting Doppler spectra are consistent with predictions of an established model based on fundamental electrodynamic expressions, while computation times are reduced by more than one order of magnitude. This can be a key advantage with regard to operational applications of ATI. Based on model calculations for two simple current fields and various wind conditions and radar configurations, they study theoretical possibilities and limitations of oceanic current measurements by ATI. They find that best results can be expected from ATI systems operated at high microwave frequencies like 10 GHz (X band), high incidence angles like 60°, low platform altitude/speed ratios, and vertical (VV) polarization. The ATI time lag should be chosen long enough to obtain measurable phase differences, but much shorter than the decorrelation time of the backscattered field

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:38 ,  Issue: 1 )