By Topic

Low-threshold 1.3-μm InGaAsN:Sb-GaAs single-quantum-well lasers grown by molecular beam epitaxy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
X. Yang ; Dept. of Electr. Eng., Columbia Univ., New York, NY, USA ; J. B. Heroux ; M. J. Jurkovic ; W. I. Wang

1.3-μm InGaAsN:Sb-GaAs single-quantum-well laser diodes have been grown by a solid source molecular beam epitaxy (MBE) using Sb as a surfactant. A record low threshold of 1.02 kA/cm2 and a slope efficiency of 0.12 W/A are obtained for broad-area laser diodes under pulsed operation at room temperature. A characteristic temperature of 64 K and a lasing wavelength temperature dependence of 0.38 nm//spl deg/C are reported.

Published in:

IEEE Photonics Technology Letters  (Volume:12 ,  Issue: 2 )