By Topic

Missile defense and interceptor allocation by neuro-dynamic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
D. P. Bertsekas ; Lab. for Inf. & Decision Syst., MIT, Cambridge, MA, USA ; M. L. Homer ; D. A. Logan ; S. D. Patek
more authors

This paper proposes a solution methodology for a missile defense problem involving the sequential allocation of defensive resources over a series of engagements. The problem is cast as a dynamic programming/Markovian decision problem, which is computationally intractable by exact methods because of its large number of states and its complex modeling issues. We employed a neuro-dynamic programming framework, whereby the cost-to-go function is approximated using neural network architectures that are trained on simulated data. We report on the performance obtained using several different training methods, and we compare this performance with the optimal approach

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:30 ,  Issue: 1 )