By Topic

Distributed evolutionary algorithms for simulation optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pierreval, H. ; Lab. d''Inf. de Modelisation et d''Optimisation des Systemes, French Inst. of Advanced Mech. Eng., Aubiere, France ; Paris, J.-L.

The optimization of such complex systems as manufacturing systems often necessitates the use of simulation. In this paper, the use of evolutionary algorithms is suggested for the optimization of simulation models. Several types of variables are taken into account. The reduction of computing cost is achieved through the parallelization of this method, which allows several simulation experiments to be run simultaneously. Emphasis is put on a distributed approach where several computers manage both their own local population of solutions and their own simulation experiments, exchanging solutions using a migration operator. After a first evaluation through a mathematical function with a known optimum, the benefits of this new approach are demonstrated through the example of a transport lot sizing and transporter allocation problem in a manufacturing flow shop system, which is solved using a distributed software implemented on a network of eight Sun workstations

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:30 ,  Issue: 1 )