By Topic

Edge detection to guide range image segmentation by clustering techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bellon, O.R.P. ; Dept. de Inf., Univ. Federal do PR, Curtiba, Brazil ; Direne, A.I. ; Silva, L.

Edge detection is an unsolved problem in that, so far, there is no general optimal solution. However, edge detection provides rich information about the scene being observed. This is particularly true in range images, where 3D information is explicit. Many researchers have been taking advantage of edge detection information to improve the segmentation of range images by integrating edge detection with other different segmentation techniques. This paper presents a methodology to perform edge detection in range images in order to provide a reliable and meaningful edge map, which helps to guide and improve range image segmentation by clustering techniques. The obtained edge map leads to three important improvements: (1) the definition of the ideal number of regions to initialize the clustering algorithm; (2) the selection of suitable initial cluster centers; and (3) the successful identification of distinct regions with similar features. Experimental results that substantiate the effectiveness of this work are presented.

Published in:

Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on  (Volume:2 )

Date of Conference:

24-28 Oct. 1999