By Topic

Global optimization for digital MOS circuits performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen, H.M. ; Dept. of Electr. Eng., Nat. Univ. of Singapore, Singapore ; Samudra, G.S. ; Chan, D.S.H. ; Ibrahim, Y.

Apart from maximization of parametric yield, minimization of the spread in performance functions due to process variation is of extreme importance in very large scale integrated circuit design. To achieve efficient minimization of the spread, a novel algorithm based on the genetic algorithm and global approximation methods is proposed. The algorithm operates in two stages designated as coarse and fine optimization stages and adjusts design parameter set to simultaneously achieve the target performance and reduction in performance spread. The algorithm has distinctive features, such as global optimum design, subexponential complexity algorithm for N-P complete problem of global optimization, and simultaneous optimization of many functions. The algorithm is demonstrated using four design examples

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:19 ,  Issue: 1 )