By Topic

Applying a robust heteroscedastic probabilistic neural network to analog fault detection and classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zheng Rong Yang ; Dept. of Phys., Heriot-Watt Univ., Edinburgh, UK ; Zwolinski, M. ; Chalk, C.D. ; Williams, A.C.

The problem of distinguishing and classifying the responses of analog integrated circuits containing catastrophic faults has aroused recent interest. The problem is made more difficult when parametric variations are taken into account. Hence, statistical methods and techniques such as neural networks have been employed to automate classification. The major drawback to such techniques has been the implicit assumption that the variances of the responses of faulty circuits have been the same as each other and the same as that of the fault-free circuit. This assumption can be shown to be false. Neural networks, moreover, have proved to be slow. This paper describes a new neural network structure that clusters responses assuming different means and variances. Sophisticated statistical techniques are employed to handle situations where the variance tends to zero, such as happens with a fault that causes a response to be stuck at a supply rail. Two example circuits are used to show that this technique is significantly more accurate than other classification methods. A set of responses can be classified in the order of 1 s

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:19 ,  Issue: 1 )