By Topic

Spin-up instability of electromagnetically levitated spherical bodies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Priede, J. ; Inst. of Phys., Latvian State Univ., Riga, Latvia ; Geroeth, G.

Stability of a solid sphere in both uniform and linear alternating magnetic fields is considered with respect to virtual rotations. When the frequency of the alternating magnetic field exceeds a certain critical threshold depending on the configuration of the field, the sphere is found to spin up around a horizontal axis. The physical mechanism of this instability is the same as that of operation of a single-phase induction motor. Sufficiently small rotational disturbances can be completely suppressed by imposing an axial steady magnetic field of strength comparable to that of the alternating field. Nonlinear stability analysis shows that for sufficiently high frequencies, spin-up can be caused by large disturbances even when all infinitesimal disturbances are stable.

Published in:

Magnetics, IEEE Transactions on  (Volume:36 ,  Issue: 1 )