Cart (Loading....) | Create Account
Close category search window
 

Model-based synthesis of plucked string instruments by using a class of scattering recurrent networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sheng-Fu Liang ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Su, A.W.Y. ; Chin-Teng Lin

A physical modeling method for electronic music synthesis of plucked-string tones by using recurrent networks is proposed. A scattering recurrent network (SRN) which is used to analyze string dynamics is built based on the physics of acoustic strings. The measured vibration of a plucked string is employed as the training data for the supervised learning of the SRN. After the network is well trained, it can be regarded as the virtual model for the measured string and used to generate tones which can be very close to those generated by its acoustic counterpart. The “virtual string” corresponding to the SRN can respond to different “plucks” just like a real string, which is impossible using traditional synthesis techniques such as frequency modulation and wavetable. The simulation of modeling a cello “A”-string demonstrates some encouraging results of the new music synthesis technique. Some aspects of modeling and synthesis procedures are also discussed

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 1 )

Date of Publication:

Jan 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.