By Topic

On-line retrainable neural networks: improving the performance of neural networks in image analysis problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Doulamis, A. ; Dept. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, Greece ; Doulamis, N. ; Kollias, S.D.

A novel approach is presented in this paper for improving the performance of neural-network classifiers in image recognition, segmentation, or coding applications, based on a retraining procedure at the user level. The procedure includes: 1) a training algorithm for adapting the network weights to the current condition; 2) a maximum a posteriori (MAP) estimation procedure for optimally selecting the most representative data of the current environment as retraining data; and 3) a decision mechanism for determining when network retraining should be activated. The training algorithm takes into consideration both the former and the current network knowledge in order to achieve good generalization. The MAP estimation procedure models the network output as a Markov random field (MRF) and optimally selects the set of training inputs and corresponding desired outputs. Results are presented which illustrate the theoretical developments as well as the performance of the proposed approach in real-life experiments

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 1 )