By Topic

A new supervised learning algorithm for multilayered and interconnected neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yamamoto, Y. ; Dept. of Inf. & Knowledge Eng., Tottori Univ., Japan ; Nikiforuk, Peter N.

A learning algorithm is presented for supervised learning of multilayered and interconnected neural networks without using a gradient method. First, fictitious teacher signals for the outputs of each hidden unit are algebraically determined by an error backpropagation (EBP) method. Then, the weight parameters are determined by using an exponentially weighted least squares (EWLS) method. This is called the EBP-EWLS algorithm for a multilayered neural network. For an interconnected neural network, the mathematical description of the neural network is arranged in the form for which the EBP-EWLS algorithm can be applied. Simulation studies have verified the proposed technique

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 1 )