By Topic

Electrical modeling of interface roughness in thin film electroluminescent devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Neyts, Kristiaan ; Dept. of Electron. & Inf. Syst., Ghent Univ., Belgium ; De Visschere, P.M.J. ; Soenen, B. ; Stuyven, Gert

If two dielectric materials with different permittivities are in contact with each other and the interface between them is rough, then the electric field near this interface will be very inhomogeneous. In thin film electroluminescent devices, light is generated when electrons move back and forth in the phosphor layer under the influence of a strong ac electric field. At high electric fields, the electrons trapped in deep states at the interface between phosphor and insulator layer tunnel into the conduction band of the phosphor. This tunnel process is very sensitive to the electric field at the interface, so for a rough interface the electron flow will be very inhomogeneous. The relation between the interface roughness and the inhomogeneous charge transfer in thin film electroluminescent devices is investigated, based on an analytical flux tube model. The importance of the inhomogeneous current for the use of gray levels and aging is discussed

Published in:

Electron Devices, IEEE Transactions on  (Volume:47 ,  Issue: 2 )