Cart (Loading....) | Create Account
Close category search window
 

Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kyoung Yang ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; David, G. ; Jong-Gwan Yook ; Papapolymerou, I.
more authors

A comprehensive electrooptic field-mapping technique is applied to the characterization of near-field radiation patterns above a microstrip patch antenna. The amplitude and phase maps of three orthogonal electric-field components, measured using electrooptic crystals above the patch, also have revealed the transition from the near field to the far field of the radiation pattern. In addition, experimental results have been compared with a finite-element method (FEM) simulation. The measurememts show superior results to the FEM simulation, especially in terms of spatial resolution and data acquisition times. Furthermore, the scattering parameter S11 for the patch antenna has been calculated from the electrooptic measurement results of standing waves on the feeding line and compared with results from a conventional network analyzer

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:48 ,  Issue: 2 )

Date of Publication:

Feb 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.