By Topic

A model of EMG generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duchene, J. ; Univ. de Technol. de Troyes, France ; Hogrel, J.-Y.

Simulation models are unavoidable in experimental research when the point is to develop new processing algorithms to be applied on real signals in order to extract specific parameter values. Such algorithms have generally to be optimized by comparing true parameter values to those deduced from the algorithm. Only a simulation model can allow the user to access and control the actual process parameter values. This constraint is especially true when dealing with biomedical signals like surface electromyogram (SEMG). This work is an attempt to produce an efficient SEMG simulation model as a help for assessing algorithms related to SEMG features description. It takes into account the most important parameters which could influence these characteristics. This model includes all transformations from intracellular potential to surface recordings as well as a fast implementation of the extracellular potential computation. In addition, this model allows multiple graphically-programmable electrode-set configurations and SEMG simulation in both voluntary and elicited contractions.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 2 )