By Topic

Magnetostatic image current and its application to an analytic identification of a current dipole inside a conducting sphere

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The image solution for the static magnetic field outside a conducting sphere with an internal current dipole is considered. The image current, which is a linear distribution of magnetic dipoles on the line segment between the dipole point and the center of the sphere, is derived by using the fact that the induced current does not have any contribution to the radial component of the magnetic field outside the sphere. The image is then used to obtain some explicit formulas for identifying the location and tangential moment of the primary current dipole. This explicit identification method is also tested with a real model for a patient's brain.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 2 )