By Topic

Lapped nonlinear interpolative vector quantization and image super-resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
D. G. Sheppard ; Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA ; K. Panchapakesan ; A. Bilgin ; B. R. Hunt
more authors

This article presents an improved version of an algorithm designed to perform image restoration via nonlinear interpolative vector quantization (NLIVQ). The improvement results from using lapped blocks during the decoding process. The algorithm is trained on original and diffraction-limited image pairs. The discrete cosine transform is again used in the codebook design process to control complexity. Simulation results are presented which demonstrate improvements over the nonlapped algorithm in both observed image quality and peak signal-to-noise ratio. In addition, the nonlinearity of the algorithm is shown to produce super-resolution in the restored images

Published in:

IEEE Transactions on Image Processing  (Volume:9 ,  Issue: 2 )