Cart (Loading....) | Create Account
Close category search window
 

Markov model aided decoding for image transmission using soft-decision-feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Link, R. ; Dept. of Electr. & Comput. Eng., British Columbia Univ., Vancouver, BC, Canada ; Kallel, S.

Soft-decision-feedback MAP decoders are developed for joint source/channel decoding (JSCD) which uses the residual redundancy in two-dimensional sources. The source redundancy is described by a second order Markov model which is made available to the receiver for row-by-row decoding, wherein the output for one row is used to aid the decoding of the next row. Performance can be improved by generalizing so as to increase the vertical depth of the decoder. This is called sheet decoding, and entails generalizing trellis decoding of one-dimensional data to trellis decoding of two-dimensional data (2-D). The proposed soft-decision-feedback sheet decoder is based on the Bahl algorithm, and it is compared to a hard-decision-feedback sheet decoder which is based on the Viterbi algorithm. The method is applied to 3-bit DPCM picture transmission over a binary symmetric channel, and it is found that the soft-decision-feedback decoder with vertical depth V performs approximately as well as the hard-decision-feedback decoder with vertical depth V+1. Because the computational requirement of the decoders depends exponentially on the vertical depth, the soft-decision-feedbark decoder offers significant reduction in complexity. For standard monochrome Lena, at a channel bit error rate of 0.05, the V=1 and V=2 soft-decision-feedback decoder JSCD gains in RSNR are 5.0 and 6.3 dB, respectively

Published in:

Image Processing, IEEE Transactions on  (Volume:9 ,  Issue: 2 )

Date of Publication:

Feb 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.