Cart (Loading....) | Create Account
Close category search window

AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Khan, M.Asif ; Dept. of Electr. & Comput. Eng., South Carolina Univ., Columbia, SC, USA ; Hu, X. ; Sumin, G. ; Lunev, A.
more authors

We report on the AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor (MOS-HFET) and present the results of the comparative studies of this device and a base line AlGaN/GaN heterostructure field effect transistor (HFET). For a 5-/spl mu/ source-to-drain opening, the maximum current was close to 600 mA/mm for both devices. The gate leakage current for the MOS-HFET was more than six orders of magnitude smaller than for the HFET.

Published in:

Electron Device Letters, IEEE  (Volume:21 ,  Issue: 2 )

Date of Publication:

Feb. 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.