Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Bayesian wavelet-domain image modeling using hidden Markov trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Romberg, J.K. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Hyeokho Choi ; Baraniuk, R.G.

Wavelet-domain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint statistics of the wavelet coefficients of real-world data. One potential drawback to the HMT framework is the need for computationally expensive iterative training (using the EM algorithm, for example). In this paper, we propose two reduced-parameter HMT models that capture the general structure of a broad class of grayscale images. The image HMT (iHMT) model leverages the fact that for a large class of images the structure of the HMT is self-similar across scale. This allows us to reduce the complexity of the iHMT to just nine easily trained parameters (independent of the size of the image and the number of wavelet scales). In the universal HMT (uHMT) we take a Bayesian approach and fix these nine parameters. The uHMT requires no training of any kind. While simple, we show using a series of image estimation/denoising experiments that these two new models retain nearly all of the key structures modeled by the full HMT. Based on these new models, we develop a shift-invariant wavelet denoising scheme that outperforms all algorithms in the current literature

Published in:

Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on  (Volume:1 )

Date of Conference:

1999