By Topic

Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Giles, C.R. ; AT&T Bell Lab., Holmdel, NJ, USA ; Burrus, C.A. ; DiGiovanni, D.J. ; Dutta, N.K.
more authors

Erbium-doped fibers are characterized using loss and gain coefficients, and one amplifier saturation parameter. With a large-signal amplifier model that resolves the amplified spontaneous emission spectrum, these easily measured parameters allow the fiber performance in 980-nm or 1480-nm pumped optical amplifiers to be assessed rapidly. In tests at 980-nm pump wavelength, good agreement between the theoretical and experimentally measured gains was obtained with amplifiers having either germano-silicate or germano-alumino-silicate core fibers.<>

Published in:

Photonics Technology Letters, IEEE  (Volume:3 ,  Issue: 4 )