By Topic

Speaker identification using a combination of different parameters as feature inputs to an artificial neural network classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moonasar, V. ; Dept. of Electron. Eng., ML Sultan Technikon, Durban, South Africa ; Venayagamoorthy, G.K.

This paper presents a technique using artificial neural networks (ANNs) for speaker identification that results in a better success rate compared to other techniques. The technique used in this paper uses both power spectral densities (PSDs) and linear prediction coefficients (LPCs) as feature inputs to a self organizing feature map to achieve a better identification performance. Results for speaker identification with different methods are presented and compared

Published in:

Africon, 1999 IEEE  (Volume:1 )

Date of Conference:

1999