By Topic

An adaptive fuzzy logic controller: its VLSI architecture and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jer Min Jou ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Pei-Yin Chen ; Sheng-Fu Yang

Most previous work about the hardware design of a fuzzy logic controller (FLC) intended to either improve its inference performance for real-time applications or to reduce its hardware cost. To our knowledge, there has been no attempt to design a hardware FLC that can perform an adaptive fuzzy inference for the applications of on-line adaptation. The purpose of this paper is to present such an adaptive memory-efficient FLC and its applications. Taking advantage of the adaptability provided by a symbolic fuzzy rule format and the dynamic membership function generator, as well as the high-speed integration capability afforded by VLSI, the proposed adaptive fuzzy logic controller (AFLC) can perform an adaptive fuzzy inference process using various inference parameters, such as the shape and location of a membership function, dynamically and quickly. Three examples are used to illustrate its applications, and the experimental results show the excellent adaptability provided by AFLC.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:8 ,  Issue: 1 )