By Topic

A novel and efficient routing architecture for multi-FPGA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. A. S. Khalid ; Quickturn Syst. Inc., San Jose, CA, USA ; J. Rose

Multi-FPGA systems (MFSs) are used as custom computing machines, logic emulators and rapid prototyping vehicles. A key aspect of these systems is their programmable routing architecture which is the manner in which wires, FPGAs and field-programmable interconnect devices (FPIDs) are connected. Several routing architectures for MFSs have been proposed, and previous research has shown that the partial crossbar is one of the best existing architectures. In this paper, we propose a new routing architecture, called the hybrid complete-graph and partial-crossbar (HCGP) which has superior speed and cost compared to a partial crossbar. The new architecture uses both hard-wired and programmable connections between the FPGAs. We compare the performance and cost of the HCGP and partial crossbar architectures experimentally, by mapping a set of 15 large benchmark circuits into each architecture. A customized set of partitioning and interchip routing tools were developed, with particular attention paid to architecture-appropriate interchip routing algorithms. We show that the cost of the partial crossbar (as measured by the number of pins on all FPGAs and FPIDs required to fit a design), is on average 20% more than the new HCGP architecture and as much as 25% more. Furthermore, the critical path delay for designs implemented on the partial crossbar were on average 20% more than the HCGP architecture and up to 43% more. Using our experimental approach, we also explore a key architecture parameter associated with the HCGP architecture-the proportion of hard-wired connections versus programmable connections-to determine its best value.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:8 ,  Issue: 1 )