By Topic

Solving covering problems using LPR-based lower bounds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
F. Fallah ; Fujitsu Labs. of America Inc., Sunnyvale, CA, USA ; S. Liao ; S. Devadas

Unate and binate covering problems are a subclass of general integer linear programming problems with which several problems in logic synthesis, such as two-level logic minimization and technology mapping, are formulated. Previous branch-and-bound methods for solving these problems exactly use lower bounding techniques based on finding maximal independent sets. In this paper, we examine lower bounding techniques based on linear programming relaxation (LPR) for the covering problem. We show that a combination of traditional reductions (essentiality and dominance) and incremental computation of LPR-based lower bounds can exactly solve difficult covering problems orders of magnitude faster than traditional methods.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:8 ,  Issue: 1 )