By Topic

Underwater target detection using multichannel subband adaptive filtering and high-order correlation schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chunhua Yuan ; Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA ; M. R. Azimi-Sadjadi ; J. Wilbur ; G. J. Dobeck

In this paper, new pre- and post-processing schemes are developed to process shallow-water sonar data to improve the accuracy of target detection. A multichannel subband adaptive filtering is applied to preprocess the data in order to isolate the potential target returns from the acoustic backscattered signals and improve the signal-to-reverberation ratio. This is done by estimating the time delays associated with the reflections in different subbands. The preprocessed results are then beamformed to generate an image for each ping of the sonar. The testing results on both the simulated and real data revealed the efficiency of this scheme in time-delay estimation and its capability in removing most of the competing reverberations and noise. To improve detection rate while significantly minimizing the incident of false detections, a high-order correlation (HOC) method for postprocessing the beamformed images is then developed. This method determines the consistency in occurrence of the target returns in several consecutive pings. The application of the HOC process to the real beamformed sonar data showed the ability of this method for removing the clutter and at the same time boosting the target returns in several consecutive pings. The algorithm is simple, fast, and easy to implement.

Published in:

IEEE Journal of Oceanic Engineering  (Volume:25 ,  Issue: 1 )