Cart (Loading....) | Create Account
Close category search window
 

An accurate four-quadrant nonlinear dynamical model for marine thrusters: theory and experimental validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bachmayer, R. ; Dept. of Mech. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Whitcomb, L.L. ; Grosenbaugh, M.A.

This paper reports two specific improvements in the finite-dimensional nonlinear dynamical modeling of marine thrusters. Previously reported four-quadrant models have employed thin airfoil theory considering only axial fluid flow and using sinusoidal lift/drag curves. First, we present a thruster model incorporating the effects of rotational fluid velocity and inertia on thruster response. Second, we report a novel method for experimentally determining nonsinusoidal lift/drag curves. The model parameters are identified using experimental thruster data (force, torque, and fluid velocity). The models are evaluated by comparing experimental performance data with numerical model simulations. The data indicates that thruster models incorporating both reported enhancements provide superior accuracy in both transient and steady-state responses.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:25 ,  Issue: 1 )

Date of Publication:

Jan. 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.