By Topic

Performance of an adaptive successive serial-parallel CDMA cancellation scheme in flat Rayleigh fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tik-Bin Oon ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Steele, R. ; Ying Li

The performance of a successive concatenated cancellation scheme for code-division multiple-access (CDMA) uplink transmission in cellular mobile radio is presented. Both serial and parallel cancellation stages are employed. The serial cancellation stage is first used to obtain initial data estimates followed by the parallel cancellation stages to enhance the accuracy of the estimates. The performance of this scheme is evaluated via analysis and simulation. In our analysis, we develop a model to consider the impact of wrongly estimating the phase and amplitude of the channel impulse response on the successive concatenated cancellation scheme. Analysis and simulation results in flat Rayleigh fading asynchronous channels with both perfect and nonperfect channel estimation and with perfect ranking confirms the accuracy of our analytical model as well as the significant improvement in performance compared to the conventional single-user matched filter (MF) detection and the stand-alone parallel cancellation schemes. Analytical results also show that the concatenated scheme has the potential to reach the single-user performance bound for a wide range of user base size, up to K=120 users, with a processing gain of 127 using one serial and three parallel cancellation stages. Finally, we propose a method whereby the receiver adapts with the number of users in order to retain the bit error ratio (BER) performance while decreasing the processing delay

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:49 ,  Issue: 1 )