By Topic

Universal constructions for large objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anderson, J.H. ; Dept. of Comput. Sci., North Carolina Univ., Chapel Hill, NC, USA ; Moir, M.

We present lock-free and wait-free universal constructions for implementing large shared objects. Most previous universal constructions require processes to copy the entire object state, which is impractical for large objects. Previous attempts to address this problem require programmers to explicitly fragment large objects into smaller, more manageable pieces, paying particular attention to how such pieces are copied. In contrast, our constructions are designed to largely shield programmers from this fragmentation. Furthermore, for many objects, our constructions result in lower copying overhead than previous ones. Fragmentation is achieved in our constructions through the use of load-linked, store-conditional, and validate operations on a “large” multiword shared variable. Before presenting our constructions, we show how these operations can be efficiently implemented from similar one-word primitives

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:10 ,  Issue: 12 )