By Topic

Efficient algorithms for block-cyclic array redistribution between processor sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Park, N. ; Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA ; Prasanna, V.K. ; Raghavendra, C.S.

Run-time array redistribution is necessary to enhance the performance of parallel programs on distributed memory supercomputers. In this paper, we present an efficient algorithm for array redistribution from cyclic(x) on P processors to cyclic(Kx) on Q processors. The algorithm reduces the overall time for communication by considering the data transfer, communication schedule, and index computation costs. The proposed algorithm is based on a generalized circulant matrix formalism. Our algorithm generates a schedule that minimizes the number of communication steps and eliminates node contention in each communication step. The network bandwidth is fully utilized by ensuring that equal-sized messages are transferred in each communication step. Furthermore, the time to compute the schedule and the index sets is significantly smaller. It takes O(max(P, Q)) time and is less than 1 percent of the data transfer time. In comparison, the schedule computation time using the state-of-the-art scheme (which is based on the bipartite matching scheme) is 10 to 50 percent of the data transfer time for similar problem sizes. Therefore, our proposed algorithm is suitable for run-time array redistribution. To evaluate the performance of our scheme, we have implemented the algorithm using C and MPI on an IBM SP2. Results show that our algorithm performs better than the previous algorithms with respect to the total redistribution time, which includes the time for data transfer, schedule, and index computation

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:10 ,  Issue: 12 )