By Topic

Algorithmic redistribution methods for block-cyclic decompositions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Petitet, A.P. ; Dept. of Comput. Sci., Tennessee Univ., Knoxville, TN, USA ; Dongarra, J.J.

This article presents various data redistribution methods for block-partitioned linear algebra algorithms operating on dense matrices that are distributed in a block-cyclic fashion. Because the algorithmic partitioning unit and the distribution blacking factor are most often chosen to be equal, severe alignment restrictions are induced on the operands, and optimal values with respect to performance are architecture dependent. The techniques presented in this paper redistribute data “on the fly,” so that the user's data distribution blocking factor becomes independent from the architecture dependent algorithmic partitioning. These techniques are applied to the matrix-matrix multiplication operation. A performance analysis along with experimental results shows that alignment restrictions can then be removed and that high performance can be maintained across platforms independently from the user's data distribution blocking factor

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:10 ,  Issue: 12 )