By Topic

Low-power embedded SRAM with the current-mode write technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinn-Shyan Wang ; Dept. of Electr. Eng., Chung Cheng Inst. of Technol., Taoyuan, Taiwan ; Tseng, W. ; Hung-Yu Li

In the traditional current-mode SRAMs, only the read operation is performed in the current mode. In this paper, we propose to use the current-mode technique in both the read and write operations. Due to the current mode operation, voltage swings at bit lines and data lines are kept very small during both read and write. Then, the ac power dissipation of bit lines and data lines, which is proportional to the voltage swing, can be significantly saved. A new current-mode 128/spl times/8 SRAM has been designed based on a 0.6 /spl mu/m CMOS technology, and the new SRAM consumes only 30% of the power of an SRAM with current-mode read but voltage mode write operations. Besides a test chip for the new SRAM, it has also been embedded in an 8-bit 1.1-controller. Experimental results show good agreement with the simulation results and prove the feasibility of the new technique.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:35 ,  Issue: 1 )