Cart (Loading....) | Create Account
Close category search window

Active capacitor multiplier in Miller-compensated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rincon-Mora, G. ; Power Manage. Product, Texas Instrum. Inc., Dallas, TX, USA

A technique is presented whereby the compensating capacitor of an internally compensated linear regulator, Miller-compensated two-stage amplifier, is effectively multiplied. Increasing the capacitance with a current-mode multiplier allows the circuit to occupy less silicon area and to more effectively drive capacitive loads. Reducing physical area requirements while producing the same or perhaps better performance is especially useful in complex systems where most, if not all, functions are integrated onto a single integrated circuit. Die area in such systems is a luxury. The increasing demand for mobile battery-operated devices is a driving force toward higher integration. The enhanced Miller-compensation technique developed in this paper helps enable higher integration while being readily applicable to any process technology, be it CMOS, bipolar, or BiCMOS. Furthermore, the technique applies, in general, to amplifier circuits in feedback configuration. Experimentally, the integrated linear regulator (fabricated in a 1-/spl mu/m BiCMOS process technology) proved to be stable for a wide variety of loading conditions: load currents of up to 200 mA, equivalent series resistance of up to 3 /spl Omega/, and load capacitors ranging from 1.5 nF to 20 /spl mu/E The total quiescent current flowing through the regulator was less than 30 /spl mu/A during zero load-current conditions.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:35 ,  Issue: 1 )

Date of Publication:

Jan. 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.