By Topic

Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Suzuki ; Dept. of Electron. Eng., Tokyo Univ., Japan ; K. Takiguchi ; K. Hotate

We report a novel configuration of resonator microoptic gyro (MOG), which is monolithically integrated on silica planar lightwave circuit (PLC) with countermeasures for noise factors. Optical ring-resonator gyros suffer mainly from polarization fluctuation induced noise and backscattering induced noise. We discuss eigenstate of polarization in the waveguide to clarify behavior of the former and propose a countermeasure with control of the waveguide birefringence. As for the latter, binary phase shift keying (B-PSK) with a special signal processing is proposed. Thermooptic (TO) phase modulation is the only one scheme to apply B-PSK in the silica waveguide, whose bandwidth is limited to /spl sim/1 KHz. To utilize the narrow bandwidth of the TO modulator effectively, we propose an electrical signal processing scheme and a modulation waveform to compensate the frequency response. By constructing an experimental setup, suppression of the backscattering induced noise is demonstrated, and the gyro output is observed with applying an equivalent rotation.

Published in:

Journal of Lightwave Technology  (Volume:18 ,  Issue: 1 )