By Topic

Novel concepts for GaAs/LiNbO/sub 3/ layered systems and their device applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rotter, M. ; Sektion Phys., Ludwig Maximilians Univ., Munchen, Germany ; Ruile, W. ; Scholl, G. ; Wixforth, Achim

Thin semiconductor quantum well structures fused onto LiNbO/sub 3/ substrates using the epitaxial lift-off (ELO) technology offer the possibility of controlling the surface acoustic wave (SAW) velocity via field effect. The tunability of the conductivity in the InGaAs quantum well results in a great change in SAW velocity, in general, accompanied by an attenuation. We show that an additional lateral modulation of the sheet conductivity reduces the SAW attenuation significantly, enhancing device performance. At high SAW intensity the bunching of electrons in the SAW potential also leads to a strong reduction of attenuation. These effects open new possibilities for voltage-controlled SAW devices. We demonstrate a novel, wireless, passive voltage sensor, which can be read out from a remote location.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:47 ,  Issue: 1 )