By Topic

Small element array algorithm for correcting phase aberrations using near-field signal redundancy. Part II: Experimental results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yue Li ; CSIRO, Lindfield, NSW, Australia ; Robinson, B.

For part I see ibid., vol.47, p.29 (2000). A small element array algorithm for phase-aberration correction using near-field signal redundancy was proposed in part I. Using this algorithm, subarrays are formed to narrow the transmitted and received beams when collecting common midpoint signals, so that angle-dependent aberration profiles across the array can be measured. In this paper, this algorithm is tested on data collected from a phantom with a non-isoplanatic aberrator attached to the front surface of a phased array. The aberrator is made from cast room temperature vulcanizing (RTV) silicone rubber, which has a sound velocity of about 1.02 mm/spl middot//spl mu/s/sup -1/. Results show that the subarray technique can be used to measure and correct angle-dependent, phase-aberration profiles. The theoretical results regarding the performance of several implementation methods for dynamic near-field delay correction on subarrays are also experimentally tested using data from a phantom.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:47 ,  Issue: 1 )