By Topic

A novel approach to the synthesis of recursive digital filters with linear phase

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Gu ; Dept. of Electr. Eng., Wright State Univ., Dayton, OH, USA ; B. A. Shenoi

The synthesis of recursive digital filters with linear phase is approached by means of existing approximation techniques. The design is based on a finite impulse response (FIR) filter that represents the ideal filter in terms of both magnitude and phase characteristics. The recursive digital filter with linear phase is then synthesized as an approximation of the FIR model where optimal Hankel approximation theory as well as the model reduction techniques are used. The causality and stability of the designed filter are guaranteed. This technique is used for designing both one-dimensional and two-dimensional recursive digital filters with linear phase, and is illustrated by a few numerical examples

Published in:

IEEE Transactions on Circuits and Systems  (Volume:38 ,  Issue: 6 )