By Topic

Reinforcement adaptive learning neural-net-based friction compensation control for high speed and precision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young Ho Kim ; Korea Army Headquaters, Daejeon, South Korea ; F. L. Lewis

There is an increasing number of applications in high-precision motion control systems in manufacturing, i.e., ultra-precision machining, assembly of small components and micro devices. It is very difficult to assure such accuracy due to many factors affecting the precision of motion, such as frictions and disturbances in the drive system. The standard proportional-integral-derivative (PID) type servo control algorithms are not capable of delivering the desired precision under the influence of frictions and disturbances. In this paper, the frictions are identified by a neural net, which has a critic element to measure the system performance. Then, the weight adaptation rule, defined as reinforcement adaptive learning, is derived from the Lyapunov stability theory. Therefore the proposed scheme can be applicable to a wide class of mechanical systems. The simulation results on a 1-degree-of-freedom mechanical system verify the effectiveness of the proposed algorithm

Published in:

IEEE Transactions on Control Systems Technology  (Volume:8 ,  Issue: 1 )