By Topic

Real-time failure-tolerant control of kinematically redundant manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Groom, K.N. ; Purdue Univ., West Lafayette, IN, USA ; Maciejewski, A.A. ; Balakrishnan, V.

Considers real-time fault-tolerant control of kinematically redundant manipulators to single locked-joint failures. The fault-tolerance measure used is a worst-case quantity, given by the minimum, over all single joint failures, of the minimum singular value of the post-failure Jacobians. Given any end-effector trajectory, the goal is to continuously follow this trajectory with the manipulator in configurations that maximize the fault-tolerance measure. The computation required to track these optimal configurations with brute-force methods is prohibitive for real-time implementation. We address this issue by presenting algorithms that quickly compute estimates of the worst-case fault-tolerance measure and its gradient. Comparisons show that the performance of the best method is indistinguishable from that of brute-force implementations. An example demonstrating the real-time performance of the algorithm on a commercially available seven degree-of-freedom manipulator is presented

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:15 ,  Issue: 6 )